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Foreword 
 
Don’t believe a word I say. 
It’s not that I'm lying when I tell you that this is an important book. I don't even lie at the poker  
table -- not much, anyway - so why would I lie about a book I didn't even write? 
 
It’s just that you can't trust me to be objective. I liked this book before I'd even seen a single 
page. I liked it when it was just a series of conversations between Bill, myself, and a handful of 
other math geeks. And if I hadn't made up my mind before I'd read it, I'm pretty sure they’d have 
won me over with the first sentence. 
Don’t worry, though. You don't have to trust me. Math doesn't lie. And results don't lie, either. In 
the 2006 WSOP, the authors finished in the money seven times, including Jerrod's second place 
finish in Limit Holdem, and Bill's two wins in Limit and Short Handed No Limit Hold'em. 
 
Most poker books get people talking. The best books make some people say, “How could anyone 
publish our carefully guarded secrets?" Other times, you see stuff that looks fishy enough to 
make you wonder if the author wasn't deliberately giving out bad advice. I think this book will 
get people talking, too, but it won't be the usual sort of speculation. No one is going to argue that 
Bill and Jerrod don't know their math. 
 
The argument will be about whether or not the math is important. 
 
People like to talk about poker as "any man's game." Accountants and lawyers, students and 
housewives can all compete at the same level - all you need is a buy-in, some basic math and 
good intuition and you, too, can get to the final table of the World Series of Poker. That notion is 
especially appealing to lazy people who don't want to have to spend years working at something 
to achieve success. It's true in the most literal sense that anyone can win, but with some well-
invested effort, you can tip the scales considerably in your favor. 
 
The math in here isn't easy. You don't need a PhD in game theory to understand the concepts in 
this book, but it's not as simple as memorizing starting hands or calculating the likelihood of 
making your flush on the river. There's some work involved. The people who want to believe 
intuition is enough aren't going to read this book. But the people who make the effort will be 
playing with a definite edge. In fact, much of my poker success is the result of using some of the 
most basic concepts addressed in this book. 
 
Bill and Jerrod have saved you a lot of time. They've saved me a lot of a time, too. I get asked a 
lot of poker questions, and most are pretty easy to answer. But I've never had a good response 
when someone asks me to recommend a book for understanding game theory as it relates to 
poker. I usually end up explaining that there are good poker books and good game theory books, 
but no book addresses the relationship between the two. 
 
Now I have an answer. And if I ever find myself teaching a poker class for the mathematics 
department at UCLA, this will be the only book on the syllabus. 
 
Chris “Jesus" Ferguson 
Champion, 2000 World Series of Poker 
November 2006 
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Introduction 
 
 
In the late 1970s and early 1980s, the bond and option markets were dominated by traders who 
had learned their craft by experience. They believed that their experience and intuition for 
trading were a renewable edge; that is, that they could make money just as they always had by 
continuing to trade as they always had. By the mid-1990s, a revolution in trading had occurred; 
the old school grizzled traders had been replaced by a new breed of quantitative analysts, 
applying mathematics to the "art'' of trading and making of it a science. 
 
If the latest backgammon programs, based on neural net technology and mathematical analysis 
had played in a tournament in the late 1970s, their play would have been mocked as 
overaggressive and weak by the experts of the time. Today, computer analyses are considered to 
be the final word on backgammon play by the world's strongest players - and the game is 
fundamentally changed for it. 
And for decades, the highest levels of poker have been dominated by players who have learned 
the game by playing it, "road gamblers" who have cultivated intuition for the game and are adept 
at reading other players' hands from betting patterns and physical tells. Over the last five to ten 
years, a whole new breed of player has risen to prominence within the poker community. 
Applying the tools of computer science and mathematics to poker and sharing information across 
the Internet, these players have challenged many of the assumptions that underlie traditional 
approaches to the game. One of the most important features of this new approach to the game is 
a reliance on quantitative analysis and the application of mathematics to the game. Our intent in 
this book is to provide an introduction to quantitative techniques as applied to poker and to the 
application of game theory, a branch of mathematics, to poker. 
 
Any player who plays poker is using some model, no matter what methods he uses to inform it. 
Even if a player is not consciously using mathematics, a model of the situation is implicit in his 
decisions; that is, when he calls, raises, or folds, he is making a statement about the relative 
values of those actions. By preferring one action over another, he articulates his belief that one 
action is better than another in a particular situation. Mathematics are a particularly appropriate 
tool for making decisions based on information. Rejecting mathematics as a tool for playing 
poker puts one's decision-making at the mercy of guesswork. 
 
Common Misconceptions 
We frequently encounter players who dismiss a mathematical approach out of hand, often based 
on their misconceptions about what this approach is all about. We list a few of these here; these 
are ideas that we have heard spoken, even by fairly knowledgeable players. For each of these, we 
provide a brief rebuttal here; throughout this book, we will attempt to present additional 
refutation through our analysis. 
 
1) By analyzing what has happened in the past - our opponents, their tendencies, 
and so on-we can obtain a permanent and recurring edge. 
This misconception is insidious because it seems very reasonable; in fact, we can gain an edge 
over our opponents by knowing their strategies and exploiting them. But this edge can be only 
temporary; our opponents, even some of the ones we think play poorly, adapt and evolve by 
reducing the quantity and magnitude of clear errors they make and by attempting to counter-
exploit us. We have christened this first misconception the "PlayStation™ theory of poker" - that 
the poker world is full of players who play the same fixed strategy, and the goal of playing poker 
is to simply maximize profit against the fixed strategies of our opponents. In fact, our opponents' 
strategies are dynamic, and so we must be dynamic; no edge that we have is necessarily 
permanent. 
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2) Mathematical play is predictable and lacks creativity. 
In some sense this is true; that is, if a player were to play the optimal strategy to a game, his 
strategy would be "predictable" - but there would be nothing at all that could be done with this 
information. In the latter parts of the book, we will introduce the concept of balance this is the 
idea that each action sequence contains a mixture of hands that prevents the opponent from 
exploiting the strategy. Optimal play incorporates a precisely calibrated mixture of bluffs, semi-
bluffs, and value bets that make it appear entirely unpredictable. "Predictable" connotes 
"exploitable," but this is not necessarily true. If a player has aces every time he raises, this is 
predictable and exploitable. However, if a player always raises when he holds aces, this is not 
necessarily exploitable as long as he also raises with some other hands. The opponent is not able 
to exploit sequences that contain other actions because it is unknown if the player holds aces. 
 
3) Math is not always applicable; sometimes "the numbers go out the window." 
This misconception is related to the idea that for any situation, there is only one mathematically 
correct play; players assume that even playing exploitively, there is a correct mathematical play - 
but that they have a "read" which causes them to prefer a different play. But this is simply a 
narrow definition of "mathematical play" - incorporating new information into our understanding 
of our opponent's distribution and utilizing that information to play more accurately is the major 
subject of Part II. In fact, mathematics contains tools (notably Bayes' theorem) that allow us to 
precisely quantify the degree to which new information impacts our thinking; in fact, playing 
mathematically is more accurate as far as incorporating "reads" than playing by "feel." 
 
4) Optimal play is an intractable problem for real-life poker games; hence, we 
should simply play exploitively. 
This is an important idea. It is true that we currently lack the computing power to solve headsup 
holdem or other games of similar complexity. (We will discuss what it means to "solve" a game 
in Part III). We have methods that are known to find the answer, but they will not run on modern 
computers in any reasonable amount of time. "Optimal" play does not even exist for multiplayer 
games, as we shall see. But this does not prevent us from doing two things: attempting to create 
strategies which share many of the same properties as optimal strategies and thereby play in a 
"near-optimal" fashion; and also to evaluate candidate strategies and find out how far away from 
optimal they are by maximally exploiting them. 
 
5) When playing [online, in a tournament, in high limit games, in low limit 
games...], you have to change your strategy completely to win. 
This misconception is part of a broader misunderstanding of the idea of a "strategy" - it is in fact 
true that in some of these situations, you must take different actions, particularly exploitively, in 
order to have success. But this is not because the games are fundamentally different; it is because 
the other players play differently and so your responses to their play take different forms. 
Consider for a moment a simple example. Suppose you arc dealt A9s on the button in a full ring 
holdem game. In a small-stakes limit holdem game, six players might limp to you, and you 
should raise. In a high limit game, it might be raised from middle position, and you would fold. 
In a tournament, it might be folded to you, and you would raise. These are entirely different 
actions, but the broader strategy is the same in all - choose the most profitable action. 
 
Throughout this book, we will discuss a wide variety of poker topics, but overall, our ideas could 
be distilled to one simple piece of play advice: Maximize average profit. This idea is at the heart 
of all our strategies, and this is the one thing that doesn't change from game condition to game 
condition. 
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Psychological Aspects 
Poker authors, when faced with a difficult question, are fond of falling back on the old standby, 
"'It depends." - on the opponents, on one's 'read', and so on. And it is surely true that the most 
profitable action in many poker situations does in fact depend on one's sense, whether intuitive 
or mathematical, of what the opponent holds (or what he can hold). But one thing that is often 
missing from the qualitative reasoning that accompanies "It depends," is a real answer or a 
methodology for arriving at an action. In reality, the answer does in fact depend on our 
assumptions, and the tendencies and tells of our opponents are certainly something about which 
reasonable people can disagree. But once we have characterized their play into assumptions, the 
methods of mathematics take over and intuition fails as a guide to proper play. 
 
Some may take our assertion that quantitative reasoning surpasses intuition as a guide to play as 
a claim that the psychological aspects of poker are without value. But we do not hold this view. 
The psychology of poker can be an absolutely invaluable tool for exploitive play, and the 
assumptions that drive the answers that our mathematical models can generate are often strongly 
psychological in nature. The methods by which we utilize the information that our intuition or 
people-reading skills give us is our concern here. In addition, we devote time to the question of 
what we ought to do when we are unable to obtain such information, and also in exposing some 
of the poor assumptions that often undermine the information-gathering efforts of intuition. With 
that said, we will generally, excepting a few specific sections, ignore physical tells and opponent 
profiling as being beyond the scope of this book and more adequately covered by other writers, 
particularly in the work of Mike Garo. 
 
About This Book 
We are practical people - we generally do not study poker for the intellectual challenge, although 
it turns out that there is a substantial amount of complexity and interest to the game. We study 
poker with mathematics because by doing so, we make more money. As a result, we are very 
focused on the practical application of our work, rather than on generating proofs or covering 
esoteric, improbable cases. This is not a mathematics textbook, but a primer on the application of 
mathematical techniques to poker and in how to turn the insights gained into increased profit at 
the table. 
Certainly, there are mathematical techniques that can be applied to poker that are difficult and 
complex. But we believe that most of the mathematics of poker is really not terribly difficult, and 
we have sought to make some topics that may seem difficult accessible to players without a very 
strong mathematical background. But on the other hand, it is math, and we fear that if you are 
afraid of equations and mathematical terminology, it will be somewhat difficult to follow some 
sections. But the vast majority of the book should be understandable to anyone who has 
completed high school algebra. We will occasionally refer to results or conclusions from more 
advanced math. In these cases, it is not of prime importance that you understand exactly the 
mathematical technique that was employed. The important element is the concept - it is very 
reasonable to just "take our word for it" in some cases. 
 
To help facilitate this, we have marked off the start and end of some portions of the text so that 
our less mathematical readers can skip more complex derivations. Just look for this icon for 
guidance, indicating these cases.  
 
In addition, 
 

Solution: 
 
Solutions to example problems are shown in shaded boxes. 
As we said, this book is not a mathematical textbook or a mathematical paper to be submitted to 
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a journal. The material here is not presented in the manner of formal proof, nor do we intend it to 
be taken as such. We justify our conclusions with mathematical arguments where necessary and 
with intuitive supplemental arguments where possible in order to attempt to make the principles 
of the mathematics of poker accessible to readers without a formal mathematical background, 
and we try not to be boring. The primary goal of our work here is not to solve game theory 
problems for the pure joy of doing so; it is to enhance our ability to win money at poker. 
 
This book is aimed at a wide range of players, from players with only a modest amount of 
experience to world-class players. If you have never played poker before, the best course of 
action is to put this book down, read some of the other books in print aimed at beginners, play 
some poker, learn some more, and then return after gaining additional experience. If you are a 
computer scientist or options trader who has recently taken up the game, then welcome. This 
book is for you. If you are one of a growing class of players who has read a few books, played 
for some time, and believe you are a solid, winning player, are interested in making the next 
steps but feel like the existing literature lacks insight that will help you to raise your game, then 
welcome. This book is also for you. If you are the holder of multiple World Series of Poker 
bracelets who plays regularly in the big game at the Bellagio, you too are welcome. There is 
likely a fair amount of material here that can help you as well. 
 
Organization  
 
The book is organized as follows: 
 
Part I: Basics, is an introduction to a number of general concepts that apply to all forms of 
gambling and other situations that include decision making under risk. We begin by introducing 
probability, a core concept that underlies all of poker. We then introduce the concept of a 
probability distribution, an important abstraction that allows us to effectively analyze situations 
with a large number of possible outcomes, each with unique and variable probabilities. Once we 
have a probability distribution, we can define expected value, which is the metric that we seek to 
maximize in poker. Additionally, we introduce a number of concepts from statistics that have 
specific, common, and useful applications in the field of poker, including one of the most 
powerful concepts in statistics, Bayes' theorem. 
Part II: Exploitive Play, is the beginning of our analysis of poker. We introduce the concept of a 
toy game, which is a smaller, simpler game that we can solve in order to gain insight about 
analogous, more complicated games. We then consider examples of toy games in a number of 
situations. First we look at playing poker with the cards exposed and find that the play in many 
situations is quite obvious; at the same time, we find interesting situations with some counter-
intuitive properties that are helpful in understanding full games. Then we consider what many 
authors treat as the heart of poker, the situation where we play our single hand against a 
distribution of the opponent's hands and attempt to exploit his strategy, or maximize our win 
against his play. This is the subject of the overwhelming majority of the poker literature. But we 
go further, to the (in our view) much more important case, where we are not only playing a 
single hand against the opponent, but playing an entire distribution of hands against his 
distribution of hands. It is this view of poker, we claim, that leads to truly strong play. 
 
Part III: Optimal Play, is the largest and most important part of this book. In this part, we 
introduce the branch of mathematics called game theory. Game theory allows us to find optimal 
strategies for simple games and to infer characteristics of optimal strategies for more 
complicated games even if we cannot solve them directly. We do work on many variations of the 
AKQ game, a simple toy game originally introduced to us in Card Player magazine by Mike 
Caro. We then spend a substantial amount of time introducing and solving [0,1] poker games, of 
the type introduced by John von Neumann and Oskar Morganstem in their seminal text on game 
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theory "Theory of Games and Economic Behavior (1944), but with substantially more 
complexity and relevance to real-life poker. We also explain and provide the optimal play 
solution to short-stack headsup no-limit holdem. 
 
Part IV: Bankroll and Risk includes material of interest on a very important topic to anyone who 
approaches poker seriously. We present the risk of ruin model, a method for estimating the 
chance of losing a fixed amount playing in a game with positive expectation but some variance. 
We then extend the risk of ruin model in a novel way to include the uncertainty surrounding any 
observation of win rate. We also address topics such as the Kelly criterion, choosing an 
appropriate game level, and the application of portfolio theory to the poker metagame. 
 
Part V: Other Topics includes material on other important topics, tournaments are the fastest-
growing and most visible form of poker today; we provide an explanation of concepts and 
models for calculating equity and making accurate decisions in the tournament environment. We 
consider the game theory of multiplayer games, an important and very complex branch of game 
theory, and show some reasons why the analysis of such games is so difficult. In this section we 
also articulate and explain our strategic philosophy of play, including our attempts to play 
optimally or at least pseudo- optimally as well as the situations in which we play exploitively. 
 
How This Book Is Different 
This book differs from other poker books in a number of ways. One of the most prominent is in 
its emphasis on quantitative methods and modeling. We believe that intuition is often a valuable 
tool for understanding what is happening. But at the same time, we eschew its use as a guide to 
what action to take. We also look for ways to identify situations where our intuition is often 
wrong, and attempt to retrain it in such situations in order to improve the quality of our reads and 
our overall play. For example, psychologists have identified that the human brain is quite poor at 
estimating probabilities, especially for situations that occur with low frequency. By creating 
alternate methods for estimating these probabilities, we can gain an advantage over our 
opponents. 
 
It is reasonable to look at each poker decision as a two-part process of gathering information and 
then synthesizing that information and choosing the right action. It is our contention that 
intuition has no place in the latter. Once we have a set of assumptions about the situation - how 
our opponent plays, what our cards are, the pot size, etc., then finding the right action is a simple 
matter of calculating expectation for the various options and choosing the option that maximizes 
this. 
 
The second major way in which this book differs from other poker books is in its emphasis on 
strategy, contrasted to an emphasis on decisions. Many poker books divide the hand into 
sections, such as "preflop play," "flop play," "turn play" etc. By doing this, however, they make 
it difficult to capture the way in which a player's preflop, flop, turn, and river play are all 
intimately connected, and ultimately part of the same strategy. We try to look at hands and 
games in a much more organic fashion, where, as much as possible, the evaluation of expectation 
occurs not at each decision point but at the beginning of the hand, where a full strategy for the 
game is chosen. Unfortunately, holdem and other popular poker games are extraordinarily 
complex in this sense, and so we must sacrifice this sometimes due to computational 
infeasibility. But the idea of carrying a strategy forward through different betting rounds and 
being constantly aware of the potential hands we could hold at this point, which our fellow poker 
theorists Chris Ferguson and Paul R. Pudaite call "reading your own hand," is essential to our 
view of poker. 
 
A third way in which this book differs from much of the existing literature is that it is not a book 
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about how to play poker. It is a book about how to think about poker. We offer very little in 
terms of specific recommendations about how to play various games; instead this book is 
devoted to examining the issues that are of importance in determining a strategy. Instead of a 
roadmap to how to play poker optimally, we instead try to offer a roadmap to how to think about 
optimal poker. 
 
Our approach to studying poker, too, diverges from much of the existing literature. We often 
work on toy games, small, solvable games from which we hope to gain insight into larger, more 
complex games. In a sense, we look at toy games to examine dimensions of poker, and how they 
affect our strategy. How does the game change when we move from cards exposed to cards 
concealed? From games where players cannot fold to games where they can? From games where 
the first player always checks to games where both players can bet? From games with one street 
to games with two? We examine these situations by way of toy games - because toy games, 
unlike real poker, are solvable in practice - and attempt to gain insight into how we should 
approach the larger game. 
 
Our Goals 
It is our hope that our presentation of this material will provide at least two things; that it will aid 
you to play more strongly in your own poker endeavors and to think about situations in poker in 
a new light, and that it will serve as a jumping-off point toward the incredible amount of serious 
work that remains to be done in this field. Poker is in a critical stage of growth at this writing; the 
universe of poker players and the mainstream credibility of the game have never been larger. Yet 
it is still largely believed that intuition and experience are determining factors of the quality of 
play - just as in the bond and options markets in the early 1980s, trading was dominated by old-
time veterans who had both qualities in abundance. A decade later, the quantitative analysts had 
grasped control of the market, and style and intuition were on the decline. In the same way, even 
those poker players regarded as the strongest in the world make serious errors and deviations 
from optimal strategies. This is not an indictment of their play but a reminder that the distance 
between the play of the best players in the world and the best play possible is still large, and that 
therefore there is a large amount of profit available to those who can bridge that gap. 
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Part I: Basics  
 
“As  for as  the  laws of  mathematics  
refer to  reality,  they are not certain;  
as  for as  they are certain,  they do  
not refer to  reality.” 

 
 

Albert Einstein  
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Chapter 1 
Decisions Under Risk: Probability and Expectation 
 
There are as many different reasons for playing poker as there are players who play the game. 
Some play for social reasons, to feel part of a group or "one of the guys," some play for 
recreation, just to enjoy themselves. Many play for the enjoyment of competition. Still others -
lay to satisfy gambling addictions or to cover up other pain in their lives. One of the difficulties 
of taking a mathematical approach to these reasons is that it's difficult to quantify the value of 
having fun or of a sense of belonging. 
 
In addition to some of the more nebulous and difficult to quantify reasons for playing poker, 
there may also be additional financial incentives not captured within the game itself. For 
example, the winner of the championship event of the World Series of Poker is virtually 
guaranteed to reap a windfall from endorsements, appearances, and so on, over and above the 
large first prize. 
 
There are other considerations for players at the poker table as well; perhaps losing an additional 
hand would be a significant psychological blow. While we may criticize this view as irrational, it 
must still factor into any exhaustive examination of the incentives to play poker. Even if we 
restrict our inquiry to monetary rewards, we find that preference for money is non-linear. For 
most people, winning five million dollars is worth much more (or has much more utility) than a 
50°/o chance of winning ten million; five million dollars is life-changing money for most, and 
the marginal value of the additional five million is much smaller. 
 
In a broader sense, all of these issues are included in the utility theory branch of economics. 
Utility theorists seek to quantify the preferences of individuals and create a framework under 
which financial and non-financial incentives can be directly compared. In reality, it is utility that 
we seek to maximize when playing poker (or in fact, when doing any tiring). However, the use 
of utility theory as a basis for analysis presents a difficulty; each individual has his own utility 
curves and so general analysis becomes extremely difficult. 
 
In this book, we will therefore refrain from considering utility and instead use money won inside 
the game as a proxy for utility. In the bankroll theory section in Part IV, we will take an in-depth 
look at certain meta-game considerations, introduce such concepts as risk of ruin, the Kelly 
criterion, and certainty equivalent. All of these are measures of risk that have primarily to do 
with factors outside the game. Except when expressly stated, however, we will take as a premise 
that players are adequately bankrolled for the games they are playing in, and that their sole 
purpose is to maximize the money they will win by making the best decisions at every point. 
 
Maximizing total money won in poker requires that a player maximize the expected value of his 
decisions. However, before we can reasonably introduce this cornerstone concept, we must first 
spend some time discussing the concepts of probability that underlie it. The following material 
owes a great debt to Richard Epstein's text The Theory of Gambling and Statistical Logic (1967), 
a valuable primer on probability and gambling. 
 
Probability  
Most of the decisions in poker take place under conditions where the outcome has not yet been 
determined. When the dealer deals out the hand at the outset, the players' cards are unknown, at 
least until they are observed. Yet we still have some information about the contents of the other 
players' hands. The game's rules constrain the contents of their hands-while a player may hold 
the jack-ten of hearts, he cannot hold the ace-prince of billiard tables, for example. The 
composition of the deck of cards is set before starting and gives us information about the hands. 
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Consider a holdem hand. What is the chance that the hand contains two aces? You may know the 
answer already, but consider what the answer means. What if we dealt a million hands just like 
this? How many pairs of aces would there be? What if we dealt ten million? Over time and many 
trials, the ratio of pairs of aces to total hands dealt will converge on a particular number. We 
define probability as this number. Probability is the key to decision-making in poker as it 
provides a mathematical framework by which we can evaluate the likelihood of uncertain events. 
 
If n trials of an experiment (such as dealing out a holdem hand) produce no occurrences of an 
event x, we define the probability p of x occurring p{x) as follows: 
 ���� =  lim�→�

��
�

         (1.1) 
 
Now it happens to be the case that the likelihood of a single holdem hand being a pair of aces is 
1

221� . We could, of course, deterrnine this by dealing out ten billion hands and observing the 
ratio of pairs of aces, to total hands dealt. Tins, however, would be a lengthy and difficult 
process, and we can do better by breaking the problem up into components. First we consider 
just one card. What is the probability that a single card is an ace? Even this problem can be 
broken down further - what is the probability that a single card is the ace of spades? 
 
This final question can be answered rather directly. We make the following assumptions: 
 

• There are fifty-two cards in a standard deck.  
• Each possible card is equally likely. 

 
Then the probability of any particular card being the one chosen is 1

52� . If the chance of the card 
being the ace of spades is 1

52� , what is the chance of the card being any ace? This is equivalent 
to the chance that the card is the ace of spades OR that it is the ace of hearts OR that it is the ace 
of diamonds OR that it is the ace of clubs. There are four aces in the deck, each with a 1

52�  
chance of being the card, and summing these probabilities, we have: ���� = �4� � 1

52
� 

 ���� = � 1

13
� 

 
We can sum these probabilities directly because they are mutually exclusive; that is, no card can 
simultaneously be both the ace of spades and the ace of hearts. Note that the probability 1

13�  is 
exactly equal to the ratio (number of aces in the deck)/(number of cards total). This relationship 
holds just as well as the summing of the individual probabilities. 
 
Independent Events 
Some events, however, are not mutually exclusive. Consider for example, these two events: 
 

1. The card is a heart  
2. The card is an ace. 

 
If we try to figure out the probability that a single card is a heart OR that it is an ace, we find 
there are thirteen hearts in the deck out of fifty-cards, so the chance that the card is a heart is 1 4� . 
The chance that the card is an ace is, as before, 1

13� . However, we cannot simply add these 
probabilities as before, because it is possible for a card to both be an ace and a heart. 
There are two types of relationships between events. The first type are events that have no effect 
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on each other. For example, the closing value of the NASDAQ stock index and the value of the 
dice on a particular roll at the craps table in a casino in Monaco that evening are basically 
unrelated events; neither one should impact the other in any way that is not negligible. If the 
probability of both events occurring equals the product of the individual probabilities, then the 
events are said to be independent. The probability that both A and B occur is called the joint 
probability of A and B. 
 
In this case, the joint probability of a card being both a heart and an ace is (1

13� ) (1
4� ), or 1 52� . 

This is because the fact that the card is a heart does not affect the chance that it is an ace - all four 
suits have the same set of cards. 
 
Independent events are not mutually exclusive except when one of the events has probability 
zero. In this example, the total number of hearts in the deck is thirteen, and the total of aces in 
the deck is four. However, by adding these together, we are double-counting one single card (the 
ace of hearts). There are actually thirteen hearts and three other aces, or if you prefer, four aces, 
and twelve other hearts. It turns out that the general application of this concept is that the 
probability that at least one of two mutually non-exclusive events A and B will occur is the sum 
of the probabilities of A and B minus the joint probability of A and B. So the probability of the 
card being a heart or an ace is equal to the chance of it being a heart (1

4� ) plus the chance of it 
being an ace minus the chance of it being both (1

52� ), or 4
13� . This is true for all events, 

independent or dependent. 
 
Dependent Events 
Some events, by contrast, do have impacts on each other. For example, before a baseball game, a 
certain talented pitcher might have a 3% chance of pitching nine innings and allowing no runs, 
while his team might have a 60% chance of winning the game. However, the chance of the 
pitcher's team winning the game and him also pitching a shutout is obviously not 60% times 3%. 
Instead, it is very close to 3% itself, because the pitcher's team will virtually always win the 
game when he accomplishes this. These events are called dependent. We can also consider the 
conditional probability of A given B, which is the chance that if B happens, A will also happen. 
The probability of A and B both occurring for dependent events is equal to the probability of A 
multiplied by the conditional probability of B given A. Events are independent if the conditional 
probability of A given B is equal to the probability of A alone. 
 
Summarizing these topics more formally, if we use the following notation:  
 ��� ∪ �� = Probability of A or 8 occurring.  �(� ∩ �) = Probability of A and B occurring. �(�|�) = Conditional probability of A occurring given B has already occurred. 
 
The ∪ and ∩ notations are from set theory and formally represent "union" and "intersection." We 
prefer the more mundane terms "or" and "and." Likewise, | is the symbol for "given," so we 
pronounce these expressions as follows: 
 ��� ∪ �� = “p of A or B” �(� ∩ �) = “p of A and B” �(�|�) = “p of A given B” 
 
Then for mutually exclusive events: ��� ∪ �� = ���� +  �(�)         (1.2) 
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For independent events: ��� ∩ �� = �����(�)          (1.3)  
 
For all events: ��� ∪ �� = ���� +  ����− ��� ∩ ��         (1.4) 
 
For dependent events: ��� ∩ �� = �����(�|�)          (1.5) 
 
Equation 1.2 is simply a special case of Equation 1.4 for mutually exclusive events,  ��� ∩ �� = 0. Likewise, Equation 1.3 is a special case of Equation 1.5, as for independent 
events, ���|�� = �(�). Additionally, if ���|�� = �(�)., then ���|�� = �(�). 
 
We can now return to the question at hand. How frequently will a single holdem hand dealt from 
a full deck contain two aces? There are two events here: 
 

• A: The first card is an ace.  
• B: The second card is an ace. 

 
p(A) = 1 13� , and p(B) = 1 13�  as well. However, these two events are dependent, if A occurs (the 
first card is an ace), then it is less likely that B will occur, as the cards are dealt without 
replacement. So ���|�� is the chance that the second card is an ace given that the first card is an 
ace. There are three aces remaining, and fifty-one possible cards, so ���|�� =  3

51	 , or 1 17� . 
 ��� ∩ �� = �����(�|�) ��� ∩ �� =  (1

13	 )(1
17	 ) ��� ∩ �� =  1

221	  

 
There are a number of other simple properties that we can mention about probabilities. First, the 
probability of any event is at least zero and no greater than one. Referring back to the definition 
of probability, n trials will never result in more than n occurrences of the event, and never less 
than zero occurrences. The probability of an event that is certain to occur is one. The probability 
of an event that never occurs is zero. Tire probability of an event's complement -that is, the 
chance that an event does not occur, is simply one minus the event's probability. 
 
Summarizing, if we use the following notation:  
 �
 � � =  Probability that A does not occur. 
 
C = a certain event 
I = an impossible event 
 
Then we have: 
 
0 ≤ ���� ≤ 1 for any A         (1.6) 
p(C) = 1           (1.7) 
p(I) = 0           (1.8) ���� + �
 � � = 1          (1.9) 
 
Equation 1.9 can also be restarted as: ���� = 1 − �
 � �          (1.10) 
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We can solve many probability problems using these rules 
Some common questions of probability are simple, such as the chance of rolling double sixes on 
two dice, hi terms of probability, this can be stated using equation 1.3, since the die rolls are 
independent. Let p(A) be the probability of rolling a six on the first die and p(B) be the 
probability of rolling a six on the second die. Then: 
 ��� ∩ �� = �����(�) ��� ∩ �� =  (1

6	 )(1
6	 ) ��� ∩ �� =  1

36	  

 
Likewise, using equation 1.2, the chance of a single player holding aces, kings, or queens 
becomes: 
 
p(AA) = 1

221�  

p(KK) = 1
221�  

p(QQ) = 1 221�  

p({AA, KK, QQ}) = p(AA) + p(KK) + p(QQ)  = 3
221	  

 
Additionally we can solve more complex questions, such as:  
 
How likely is it that a suited hand will flop a flush? 
 
We hold two of the flush suit, leaving eleven in the deck. All three of the cards must be of the 
flush suit, meaning that we have A — the first card being a flush card, B — the second card 
being a flush card given that the first card is a flush card, and C= the third card being a flush card 
given than both of the first two are flush cards. 
 
p(A) = 11

50�     (two cards removed from the deck in the player's hand) 
 ���|�� =  10

49	   (one flush card and three total cards removed) 
  ��|(� ∩ �)� =  9

48	  (two flush cards and four total cards removed) 
 

Applying equation 1.5, we get: 
 ��� ∩ �� = �����(�|�) ��� ∩ �� =  (1

50	 )(10
49	 ) ��� ∩ �� =  11

245	  

 

Letting D = (� ∩ �), we can use equation 1.5 again:  

 ��� ∩ � = �����(|�) ��� ∩ � ∩ � = ��� ∩ ���(|(� ∩ �)) ��� ∩ � ∩ � =  (11
245	 )(9

48	 ) ��� ∩ � ∩ � =  33
3920	   , or a little less than 1%. 

 

We can apply these rules to -virtually any situation, and throughout the text we will use these 
properties and rules to calculate probabilities for single events. 



_________________________________________________________________________ 
THE MATHEMATICS OF POKER                                                                                                                         20 
 

Probability Distributions 
Though single event probabilities are important, it is often the case that they are inadequate to 
fully analyze a situation. Instead, it is frequently important to consider many different 
probabilities at the same time. We can characterize the possible outcomes and their probabilities 
from an event as a probability distribution. 
 
Consider a fair coin flip. The coin flip has just two possible outcomes - each outcome is mutually 
exclusive and has a probability of 1

2� . We can create a probability distribution for the coin flip 
by taking each outcome and pairing it with its probability. So we have two pairs: (heads, 1

2� ) and 
(tails, 1 2� ). 
 
If C is the probability distribution of the result of a coin flip, then we can write this as: 
 
C = {(heads, 1 2� ), (tails, 1 2� )}  
 
Likewise, the probability distribution of the result of a fair six-sided die roll is: 
D = {(1,1 6� ), (2,1 6� ), (3, 1 6� ), (4, 1 6� ), (5, 1 6� ), (6, 1 6� )} 
 
We can construct a discrete probability distribution for any event by enumerating an exhaustive 
and mutually exclusive list of possible outcomes and pairing these outcomes with their 
corresponding probabilities. 
 
We can therefore create different probability distributions from the same physical event. From 
our die roll we could also create a second probability distribution, this one the distribution of the 
odd-or-evenness of the roll: 
 
D’ = {(odd, 1 2� ), (even, 1 2� )} 
 
In poker, we are almost always very concerned with the contents of our opponents' hands. But it 
is seldom possible to narrow down our estimate of these contents to a single pair of cards. 
Instead, we use a probability distribution to represent the hands he could possibly hold and the 
corresponding probabilities that he holds them. At the beginning of the hand, before anyone has 
looked at their cards, each player's probability distribution of hands is identical. As the hand 
progresses, however, we can incorporate new information we gain through the play of the hand, 
the cards in our own hand, the cards on the board, and so on, to continually refine the probability 
estimates we have for each possible hand. 
 
Sometimes we can associate a numerical value with each element of a probability distribution. 
For example suppose that a friend offers to flip a fair coin with you. The winner will collect $10 
from the loser. Now the results of the coin flip follow the probability distribution we identified 
earlier: 
 
C = {(heads, 1 2� ), (tails, 1 2� )}  
 
Since we know the coin is fair, it doesn't matter who calls the coin or what they call, so we can 
identify a second probability distribution that is the result of the bet: 
 
C’ = {(win, 1

2� ), (lose, 1 2� )} 
 
We can then go further, and associate a numerical value with each result. If we win the flip, our 
friend pays us $10. If we lose the flip, then we pay him $10. So we have the following: 
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B = {(+$10, 1 2� ), (-$10, 1 2� )}  
 
When a probability distribution has numerical values associated with each of the possible 
outcomes, we can find the expected value (EV) of that distribution, which is the value of each 
outcome multiplied by its probability, all summed together. Throughout the text, we will use the 
notation <X> to denote "the expected value of X." For this example, we have: 
 
<B>  = 
1

2	 ��+$10� + 
1
2	 ��−$10� 

<B>  = $5 + (-$5) 
<B>  = 0 
 
Hopefully this is intuitively obvious - if you flip a fair coin for some amount, half the time vou 
win and half the time you lose. The amounts are the same, so you break even on average. Also, 
the EV of declining your friend's offer by not flipping at all is also zero, because no money 
changes hands. 
 
For a probability distribution P, where each of the n outcomes has a value ��  and a probability 
then �� then P’s expected value <P> is: 
 
< � >= ∑ �����

���            (1.11) 
 
At the core of winning at poker or at any type of gambling is the idea of maximizing expected 
value. In this example, your friend has offered you a fair bet. On average, you are no better or 
worse off by flipping with him than you are by declining to flip. 
 
Now suppose your friend offers you a different, better deal. He'll flip with you again, but when 
you win, he'll pay you $11, while if he wins, you'll only pay him $10. Again, the EV of not 
flipping is 0, but the EV of flipping is not zero any more. You'll win $11 when you win but lose 
$10 when you lose. Your expected value of this new bet �� is: 
 
<��>  = 
1

2	 ��+$11� + 
1
2	 ��−$11� 

<��>  = $0.50  
 
On average here, then, you will win fifty cents per flip. Of course, this is not a guaranteed win; in 
fact, it's impossible for you to win 50 cents on any particular flip. It's only in the aggregate that 
this expected value number exists. However, by doing this, you will average fifty cents better 
than declining. 
 
As another example, let's say your same friend offers you the following deal. You'll roll a pair of 
dice once, and if the dice come up double sixes, he'll pay you $30, while if they come up any 
other number, you'll pay him $1. Again, we can calculate the EV of this proposition. 
 
<��>  = �+$30�
1

36	 � + �−$1�
35
36	 � 

<��> = $ 30
36� −  $ 35

36�    

<��> = -$ 5
36�     or about 14 cents. 

 
The value of this bet to you is about negative 14 cents. The EV of not playing is zero, so this is a 
bad bet and you shouldn't take it. Tell your friend to go back to offering you 11-10 on coin flips. 
Notice that this exact bet is offered on craps layouts around the world. 
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A very important property of expected value is that it is additive. That is, the EV of six different 
bets in a row is the sum of the individual EVs of each bet individually. Most gambling games - 
most things in life, in fact, are just like this. We are continually offered little coin flips or dice 
rolls - some with positive expected value, others with negative expected value. Sometimes the 
event in question isn't a die roll or a coin flip, but an insurance policy or a bond fund. The free 
drinks and neon lights of Las Vegas are financed by the summation of millions of little coin 
flips, on each of which the house has a tiny edge. A skillful poker player takes advantage of this 
additive property of expected value by constantly taking advantage of favorable EV situations. 
 
In using probability distributions to discuss poker, we often omit specific probabilities for each 
hand. When we do this, it means that the relative probabilities of those hands are unchanged 
from their probabilities at the beginning of the hand. Supposing that we have observed a very 
tight player raise and we know from our experience that he raises if and only if he holds aces, 
kings, queens, or ace-king, we might represent his distribution of hands as: 
 
H = {AA, KK, QQ, AKs, AKo} 
 
The omission of probabilities here simply implies that the relative probabilities of these hands 
are as they were when the cards were dealt. We can also use the <X> notation for situations 
where we have more than one distribution under examination. Suppose we are discussing a poker 
situation where two players A and B have hands taken from the following distributions: 
 
A = {AA, KK, QQ, JJ, AKo, AKs}  
B = {AA,KK,QQ} 
 
We have the following, then: 
 
< A, B >  : the expectation for playing the distribution A against the distribution B. 
< A, AA|B >    : the expectation for playing the distribution A against the hand AA 

 taken from the distribution B.  
<AA| A, AA|B > : the expectation for playing AA from A against AA from B. 
< A, B > = p(AA) < A, AA|B > +  p(KK ) < A, KK|B > + p(QQ) < A,QO| B> ...and so on. 
 
Additionally, we can perform some basic arithmetic operations on the elements of a distribution. 
For example, if we multiply all the values of the outcomes of a distribution by a real constant, 
the expected value of the resulting distribution is equal to the expected value of the original 
distribution multiplied by the constant. Likewise, if we add a constant to each of the values of the 
outcomes of a distribution, the expected value of the resulting distribution is equal to the 
expected value of the original distribution plus the constant. 
 
We should also take a moment to describe a common method of expressing probabilities, odds. 
Odds are defined as the ratio of the probability of the event not happening to the probability of 
the event happening. These odds may be scaled to any convenient base and are commonly 
expressed as "7 to 5," "3 to 2," etc. Shorter odds are those where the event is more likely: longer 
odds are those where the event is less likely. Often, relative hand values might be expressed this 
way: "That hand is a 7 to 3 favorite over the other one," meaning that it has a 70% of winning, 
and so on. 
 
Odds are usually more awkward to use than probabilities in mathematical calculations because 
they cannot be easily multiplied by outcomes to yield expectation. True "gamblers" often use 
odds, because odds correspond to the ways in which they are paid out on their bets. Probability is 
more of a mathematical concept. Gamblers who utilize mathematics may use either, but often 
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prefer probabilities because of the ease of converting probabilities to expected value. 
 
Key Concepts 
 

• The probability of an outcome of an event is the ratio of that outcome's occurrence over 
an arbitrarily large number of trials of that event. 

• A probability distribution is a pairing of a list of complete and mutually exclusive 
outcomes of an event with their corresponding probabilities. 

• The expected value of a valued probability distribution is the sum of the probabilities of 
the outcomes times their probabilities. 

• Expected value is additive. 
• If each outcome of a probability distribution is mapped to numerical values, the expected 

value of the distribution is the summation of the products of probabilities and outcomes. 
• A mathematical approach to poker is concerned primarily with the maximization of 

expected value. 
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Chapter 2 
Predicting the Future: Variance and Sample Outcomes 
 
Probability distributions that have values associated with the elements have two characteristics 
which, taken together, describe most of the behavior of the distribution for repeated trials. The 
first, described in the previous chapter, is expected value. The second is variance, a measure of 
the dispersion of the outcomes from the expectation. To characterize these two terms loosely, 
expected value measures how much you will win on average; variance measures how far your 
specific results may be from the expected value. 
 
When we consider variance, we are attempting to capture the range of outcomes that can be 
expected from a number of trials. In many fields, the range of outcomes is of particular concern 
on both sides of the mean. For example, in many manufacturing environments there is a band of 
acceptability and outcomes on either side of this band are undesirable. In poker, there is a 
tendency to characterize variance as a one-sided phenomenon, because most players are 
unconcerned with outcomes that result in winning much more than expectation. In fact, 
"variance" is often used as shorthand for negative swings. 
 
This view is somewhat practical, especially for professional players, but creates a tendency to 
ignore positive results and to therefore assume that these positive outcomes are more 
representative of the underlying distribution than they really are. One of the important goals of 
statistics is to find the probability of a certain measured outcome given a set of initial conditions, 
and also the inverse of this - inferring the initial conditions from the measured outcome. In 
poker, both of these are of considerable use. We refer to the underlying distribution of outcomes 
from a set of initial conditions as the population and the observed outcomes as the sample. In 
poker, we often cannot measure all the elements of the population, but must content ourselves 
with observing samples. 
 
Most statistics courses and texts provide material on probability as well as a whole slew of 
sampling methodologies, hypothesis tests, correlation coefficients, and so on. In analyzing poker 
we make heavy use of probability concepts and occasional use of other statistical methods. What 
follows is a quick-and-dirty overview of some statistical concepts that are useful in analyzing 
poker, especially in analyzing observed results. Much information deemed to be irrelevant is 
omitted from the following and we encourage you to consult statistics textbooks for more 
information on these topics. 
 
A commonly asked question in poker is "How often should I expect to have a winning session?" 
Rephrased, this question is "what is the chance that a particular sample taken from a population 
that consists of my sessions in a game will have an outcome > 0?" The most straightforward 
method of answering this question would be to examine the probability distribution of your 
sessions in that game and sum the probabilities of all those outcomes that are greater than zero. 
 
Unfortunately, we do not have access to that distribution - no matter how much data you have 
collected about your play in that game from the past, all you have is a sample. However, suppose 
that we know somehow your per-hand expectation and variance in the game, and we know how 
long the session you are concerned with is. Then we can use statistical methods to estimate the 
probability that you will have a winning session. The first of these items, expected value (which 
we can also call the mean of the distribution) is familiar by now; we discussed it in Chapter 1. 
 
Variance  
The second of these measures, variance, is a measure of the deviation of outcomes from the 
expectation of a distribution. Consider two bets, one where you are paid even money on a coin 
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flip, and one where you are paid 5 to 1 on a die roll, winning only when the die comes up 6. Both 
of these distributions have an EV of 0, but the die roll has significantly higher variance. 1

16�  of 
the time, you get a payout that is 5 units away from the expectation, while 5

6�  of the time you get 
a payout that is only 1 unit away from the expectation. To calculate variance, we first square the 
distances from the expected value, multiply them by the probability they occur, and sum the 
values. 
 
For a probability distribution P, where each of the n outcomes has a value xi and a probability pi, 
then the variance of P, Vp is: 
 �� = ∑ ��(��−< � >)� �

���           (2.1) 

 
Notice that because each term is squared and therefore positive, variance is always positive. 
Reconsidering our examples, the variance of the coinflip is: 
 
VC = ( 1

2 � )(1-0)2 +  (1
 2� )(-1-0)2 

VC = 1 
 

While the variance of the die roll is: 
 
VD = ( 5 6 	 )(-1-0)2 + ( 1

6 � )(5-0)2 

VD = 5 
 
In poker, a loose-wild game will have much higher variance than a tight-passive game, because 
the outcomes will be further from the mean (pots you win will be larger, but the money lost in 
pots you lose will be greater). Style of play will also affect your variance; thin value bets and 
semi-bluff raises are examples of higher-variance plays that might increase variance, 
expectation, or both. On the other hand, loose-maniacal players may make plays that increase 
their variance while decreasing expectation. And playing too tightly may reduce both quantities. 
In Part IV, we will examine bankroll considerations and risk considerations and consider a 
framework by which variance can affect our utility value of money. Except for that part of the 
book, we will ignore variance as a decision-making criterion for poker decisions. In this way 
variance is for us only a descriptive statistic, not a prescriptive one (as expected value is). 
 
Variance gives us information about the expected distance from the mean of a distribution. The 
most important property of variance is that it is directly additive across trials, just as expectation 
is. So if you take the preceding dice bet twice, the variance of the two bets combined is twice as 
large, or 10. 
 
Expected value is measured in units of expectation per event; by contrast, variance is measured 
in units of expectation squared per event squared. Because of this, it is not easy to compare 
variance to expected value directly. If we are to compare these two quantities, we must take the 
square root of the variance, which is called the standard deviation. For our dice example, the 
standard deviation of one roll is √5  ≈ 2.23. We often use the Greek letter a (sigma) to represent 
standard deviation, and by extension �� is often used to represent variance in addition to the 
previously utilized V. 
 � =  √�           (2.2) �� = �           (2.3) 
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The Normal Distribution 
When we take a single random result from a distribution, it has some value that is one of the 
possible outcomes of the underlying distribution. We call this a random variable. Suppose we 
flip a coin. The flip itself is a random variable. Suppose that we label the two outcomes 1 (heads) 
and 0 (tails). The result of the flip will then either be 1 (half the time) or 0 (half the time). If we 
take multiple coin flips and sum them up, we get a value that is the summation of the outcomes 
of the random variable (for example, heads), which we call a sample. The sample value, then, 
will be the number of heads we flip in whatever the size of the sample. 
 
For example, suppose we recorded the results of 100 coinflips as a single number - the total 
number of heads. The expected value of the sample will be 50, as each flip has an expected value 
of 0.5. 
 
The variance and standard deviation of a single flip are: 
 �� = ( 1 2 	 )(1 - 1 2 � )2  +  (1 2 � )(0 - 1 2 	 )2 ��= 1

4 �  � = 1
2 �  

 
From the previous section, we know also that the variance of the flips is additiveю 
 
So the variance of 100 flips is 25. 
 
Just as an individual flip has a standard deviation, a sample has a standard deviation as well. 
However, unlike variance, standard deviations are not additive. But there is a relationship 
between the two. 
 
For N trials, the variance will be: 
 ��	 = ��� �	 = �√�           (2.4) 
 
The square root relationship of trials to standard deviation is an important result, because it 
shows us how standard deviation scales over multiple trials. If we flip a com once, it has a 
standard deviation of  1

2 � . If we flip it 100 times, the standard deviation of a sample containing 
100 trials is not 50, but 5, the square root of 100 times the standard deviation of one flip. We can 
see, of course, that since the variance of 100 flips is 25, the standard deviation of 100 flips is 
simply the square root, 5. 
 
The distribution of outcomes of a sample is itself a probability distribution, and is called the 
sampling distribution. An important result from statistics, the Central Limit Theorem, describes 
the relationship between the sampling distribution and the underlying distribution. What the 
Central Limit Theorem says is that as the size of the sample increases, the distribution of the 
aggregated values of the samples converges on a special distribution called the normal 
distribution. 
 
The normal distribution is a bell-shaped curve where the peak, of the curve is at the population 
mean, and the tails asymptotically approach zero as the x-values go to negative or positive 
infinity. The curve is also scaled by the standard deviation of the population. The total area under 
the curve of the normal distribution (as with all probability distributions) is equal to 1, and the 
area under the curve on the interval [x1, x2] is equal to the probability that a particular result will 



_________________________________________________________________________ 
THE MATHEMATICS OF POKER                                                                                                                         27 
 

fall between x1 and x2. This area is marked region A in Figure 2.1. 
 

 
A little less formally, the Central Limit Theorem says that if you have some population and take 
a lot of big enough samples (how big depends on the type of data you're looking at), the 
outcomes of the samples will follow a bell-shaped curve around the mean of the population with 
a variance that's related to the variance of the underlying population. 
 
The equation of the normal distribution function of a distribution with mean � and standard 
deviation � is: 
 

���, �,�� =
�

�√�� exp (
(��	)�

��� )        (2.5) 

 
Finding the area between two points under the normal distribution curve gives us the probability 
that the value of a sample with the corresponding mean and variance will fall between those two 
points. The normal distribution is symmetric about the mean, so 1

2 �  of the total area is to the 
right of the mean, and 1

2 � is to the left. A usual method of calculating areas under the normal 
curve involves creating for each point something called a z-score, where � = (� − �)/�. This z-
score represents the number of standard deviations that the outcome x is away from the mean. 
 � = (� − �)/�          (2.6) 
 
We can then find something called the cumulative normal distribution for a z-score z, which is 
the area to the left of z under the curve (where the mean is zero and the standard deviation is 1). 
We call this function Ф(z). See Figure 2.2 
 
If z is a normalized z-score value, then the cumulative normal distribution function for z is: 
 

Figure 2.1. Std. Normal Dist, A = p(event between x, and 
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Ф��� =
�

√�� � 	�


→� (−

��

� )       (2.7) 

Finding the area between two values x1 and x2  is done by calculating the z-scores z1 and z2 for 
x1 and x2, finding the cumulative normal distribution values Ф(z1) and Ф(z2)  and subtracting 
them. 
 
If Ф(z) is the cumulative normal distribution function for a z-score of z, then the probability that 
a sample taken from a normal distribution function with mean µ and standard deviation � will 
fall between two z-scores x1 and x2 is: 
 


 = Ф ����	
� � − Ф ����	

� �        (2.8) 

 
Statisticians have created tables of Ф(z) values and spreadsheet programs can derive these values 
as well. Some key values are well known to students of statistics. The area between Z = -1 and Z 

= +1 is approximately 0.68; the area between z = -2 and z = +2 is approximately 0.955, and the 
area between z = -3 and Z= +3 is approximately 0.997. 
 
These values mean that the value of a sample from a normal distribution will fall: 
 
Between (� − �) and (� + �) of the mean 68% of the time. 
Between (� − 2�) and (� + 2�) of the mean 95.5% of the time. 
Between (� − 3�) and (� + 3�) of the mean 99.7% of the time. 
 
An example may help to make this clear. Let us modify the parameters of the die roll game we 
discussed before. A die is thrown, and the player loses 1 unit on 1-5, but wins 6 units on a roll of 

Figure 2.2, Cumulative normal distribution 
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6. We'll call this new game D2. 
 
The expectation of the game is: 
 
<  D2>  = ( 5 6 	 )(-1) + ( 1 6 � )(6) 

< D2 > =  1
6 � units /trial 

 
When the player wins, he gains six units. Subtracting the mean value of  1

6 �  from this outcome, 
we obtain: 
 
Vwin = (6 - 1 6 	 )2 

Vwin = (35
6 � )2 

 

Likewise, when he loses he loses one unit. Subtracting the mean value of 1
6 � from this, we have: 

 
Vlose = (-1 - 1 6 	 )2 

Vlose = (− 7
6 	 )2 

 
The variance of the game is: 
 
VD2 = p(win)(Vwin) + p(lose)(Vlose) 
VD2 = ( 1 6 	 )( 35

6 � )2 + ( 5 6 � )(-  7 6 � )2 

VD2 ≈ 6.806 units2/trial2 

 

Suppose we toss the die 200 times. What is the chance that the player will win overall in 200 
tosses? Win 40 units or more? Win 100 units or more? 
 
We can solve this problem using the techniques we have just summarized. We first calculate the 
standard deviation, sometimes called the standard error, of a sample of 200 trials. This will be: 
 � = √� = √6.806=2.61 units/trial 
 
Applying equation 2.4 we get:  
 �	 = �√� ��

 = 2.61√200 = 36.89 units/200 trials 
 
For 200 trials, the expected value, or mean (µ) of this distribution is 1 6 �  units/trial times 200 
trials or 33.33 units. Using Equation 2.6, we find the z-score of the point 0 as: 
 
zx = (x-µ)/σ  where x=0 
z0 = (0-33.33)/36.89 
z0 = -33.33/36.89 
z0 = -0.9035 
 
Consulting a probability table in a statistics textbook, we find that the probability that an 
observed outcome will lie to the left of this z-score, Ф(-0.9035) is 0.1831, Hence, there is an 
18.31% chance that the player will be behind after 200 trials. 
 
To find the chance of being 40 units ahead, we find that point's z-score: 
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z40 = (40-33.33)/(36.89) = 0.1807 
Ф(0,1807) = 0,5717 
 
But Ф(0.1807) is the probability that the observed outcome lies to the left of 40 units, or that we 
lose at least 40 units. To find the probability that we are to the right of this value, or are ahead 40 
units, we must actually find 1 - Ф(0.1807). 
 
1 - Ф(0.1807)   = 1 - 0.5717 
   = 0.4283 
 
So there is a 42.83% chance of being ahead at least 40 units after 200 tosses. 
 
And similarly for 100 units ahead: 
 
z100 = (100-33.33)/(36.89) = 1.8070 
 
From a probability table we find that Ф(1.8070) = 0.9646. Thus, for: 
 
p = 1 - Ф(1.8070)  
p = 0.0354 
 
The probability of being 100 units ahead after 200 tosses is 3.54%. 
 
These values, however, are only approximations; the distribution of 200-roll samples is not quite 
normal. We can actually calculate these values directly with the aid of a computer. Doing this 
yields: 
 
 Direct Calculation Normal Approx 

Chance of being ahead after 200 trials: 81.96%  81.69% 
Chance of being ahead at least 40 units: 40.46%  42.83% 
Chance of being ahead at least 100 units:  4.44%  3,54% 
 
As you can see, these values have slight differences. Much of this is caused by the fact that the 
direct calculations have only a discrete amount of values. 200 trials of this game can result in 
outcomes of +38 and +45, but not +39 or +42, because there is only one outcome possible from 
winning, a +6. The normal approximation assumes that all values are possible. 
 
Using this method, we return to the question posed at the beginning of the chapter: "How often 
will I have a winning session?" To solve this problem, we need to know the player's expectation 
per hand, his variance per hand and the size of his sessions. Consider a player whose win rate in 
some particular game is approximately 0.015 bets per hand, and whose standard deviation over 
the same interval is 2 bets per hand. Assume this player plans to play sessions of 300 hands 
(these would be roughly nine-hour sessions in live poker; perhaps only two to three hours 
online). How often should this player expect to win (have a result greater than 0) in a session? 
 
First we can calculate the expected value of a sample, µN : 
 
µN = Nµ 
µN = (300)(0.015)  
µN = 4.5 
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Second, we calculate his standard deviation for a 300-hand session. 
 
σN = �√� 
σ300 = �2�(√300) 
σ300 =34.6 
 
Next, we find the z-score and Ф(z) for this value: 
 
zx = (x-µN)/σ 
z0 = (0 - 4.5)/34.6 
z0 = -0.1299  
 
From a probability table we find: 
 
Ф(-0.1299) =44.83%  
p = 1 – Ф(-0.1299) 
p = l- 0.4483 
p = 0.55171 
 
This indicates that the player has a result of 0 or less 44.83% of the time - or correspondingly has 
a winning session 55.17% of the time. In reality, players may change their playing habits in order 
to produce more winning sessions for psychological reasons, and in reality "win rate" fluctuates 
significantly based on game conditions and for other reasons. But a player who simply plays 300 
hands at a time with the above performance metrics should expect to be above zero just over 
55% of the time. 
 
A more extreme example: A player once told one of the authors that he had kept a spreadsheet 
where he marked down every AQ vs. AK all-in preflop confrontation that he saw online over a 
period of months and that after 2,000 instances, they were running about 50-50. 
 
How likely is this, assuming the site's cards were fair and we have no additional information 
based on the hands that were folded? 
 
Fust, let's consider the variance or standard deviation of a single confrontation. 
 
AK vs. AQ is about 73.5% all-in preflop (including all suitedness combinations). Let's assign a 
result of 1 to AK winning and 0 to AQ winning. Then our mean is 0.735. Calculating the 
variance of a single confrontation: 
 
V = (0.735) (1- 0.735)2 + (0.265)(0- 0.735)2 

V = 0.1948 
σ = 0.4413 
 
The mean of 2,000 hands is: 
 
µN = Nµ 
µN = (2000)(0.735)  
µN = 1470 
 
For a sample of 2,000 hands, using Equation 2.4, the standard deviation is:  
 
 σN = �√� 
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σ2000 = �0.4413�(√2000) 
σ2000 =19.737 
 
The result reported here was approximately 50% of 2000, or 1000, while the sample mean would 
be about 1470 out of 2000. We can find the z-score using Equation 2.6: 
 
zx = (x-µN)/σ 
z1000 = (1000-1470)/(19.737)  
z1000 = -23.815 
 
The result reported in this case was 1000 out of 2000, while the expected population mean would 
be 1470 out of 2000. This result is then about 23.815 standard deviations away from the mean. 
Values this small are not very easy to evaluate because they are so small - in fact, my 
spreadsheet program calculates Ф(-23.815) to equal exactly zero. Suffice it to say that this is a 
staggeringly low probability. 
 
What's likely is that in fact, this player was cither exaggerating, outright lying, or perhaps made 
the common mistake of forgetting to notice when AK beat AQ, because that is the "expected" 
result. This is related to a psychological effect known as "perception bias" - we tend to notice 
things that are out of the ordinary while failing to notice things that are expected. Or perhaps the 
online site was in fact "rigged." When this example was posed to a mailing list, the reaction of 
some participants was to point to the high variance of poker and assert that a wide range of 
outcomes is possible in 2000 hands. However, this confuses the altogether different issue of 
win/loss outcomes in 2000 poker hands (which docs have quite high variance) with the outcome 
of a single poker hand (which has far less). The variance of a single hand in terms of big bets in 
most forms of poker is much higher than the variance of the winner of an all-in preflop 
confrontation. One lesson of this example is not to confuse the high variance of poker hand 
dollar outcomes with the comparatively low variance of other types of distributions. 
 
When we play poker, many random events happen. We and the other players at the table are 
dealt random cards taken from a distribution that includes all two-card combinations. There is 
some betting, and often some opportunity to either change our cards, or to have the value of our 
hand change by the dealing of additional cards, and so on. Each hand results in some outcome 
for us. whether it is whining a big pot, stealing the blinds, losing a bet or two, or losing a large 
pot. This outcome is subject to all the smaller random events that occur within the hand, as well 
as events that are not so random - perhaps we get a tell on an opponent that enables us to win a 
pot we would not otherwise have, or save a bet when we are beaten. Nevertheless, the power of 
the Central Limit Theorem is that outcomes of individual hands function approximately as 
though they were random variables selected from our "hand outcomes" distribution. And 
likewise, outcomes of sessions, and weeks, and months, and our whole poker career, behave as 
though they were appropriately-sized samples taken from this distribution. 
 
The square root relationship of trials to standard deviation makes this particularly useful, because 
as the number of trials increases, the probability that our results will be far away from our 
expected value in relative terms decreases. 
 
Assume we have a player whose distribution of hand outcomes at a particular limit has a mean of 
S75 per 100 hands, with a variance of $6,400 per hand. If we sample different numbers of hands 
from this player's distribution, we can see how the size of the sample impacts the dispersion of 
the results. We know that the probability that this player's results for a given sample will be 
between the mean minus two standard deviations and the mean plus two standard deviations is 
95.5%. We will identify for each sample size: 
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• The mean µN 
• The standard deviation σ 
• The two endpoints of the 95.5% probability interval. 

 

Hands 
µN 
 

σ Lower endpoint Higher endpoint 

100 $75 $800.00 ($1,525.00) $1,675.00 
500 $375.00 $1,788.85 ($3,202.71) $3,952.71 

1,000  $750.00 $2,529.82 ($4,309.64) $5,809.64 
5,000  $3,750.00 $5,656.85 ($7,563.71) $15,063.71 
25,000 $18,750.00 $12,649.11 ($6,548.22) $44,048.22 
50,000 $37500.00 $17888.54 $1,722.91 $73,277.09 
100,000  $75,000.00 $25,298.22 $24,403.56 $125,596.44 

1,000,000  $750,000.00 $80,000.00 $590.000.00 $910,000.00 

 
As you can see, for smaller numbers of hands, outcomes vary widely between losses and wins. 
However, as the size of the sample grows, the relative closeness of the sample result becomes 
larger and larger - although its absolute magnitude continues to grow. Comparing the standard 
deviation of one million hands to the standard deviation for one hundred hands, the size of a 
standard deviation is a hundred times as large in absolute terms, but more than a hundred times 
smaller relative to the number of hands. This is the law of large numbers at work; the larger the 
sample, the closer on a relative basis the outcomes of the sample will be. 
 
Key Concepts 

• Variance, the weighted sum of the squares of the distance from the mean of the outcomes 
of a distribution, is a valuable measurement of dispersion from the mean. 

• To compare variance to expected value, we often use its square root, standard deviation. 
• Variance is additive across trials. This gives rise to the square root relationship between 

the standard deviation of a sample of multiple trials and the standard deviation of one 
trial. 

• The Central Limit Theorem tells us that as the size of a sample increases, the distribution 
of the samples behaves more and more like a normal distribution. This allows us to 
approximate complex distributions by using the normal distribution and to understand the 
behavior of multiple-trial samples taken from a known distribution. 
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Chapter 3 
Using All the Information: 
Estimating Parameters and Bayes' Theorem 
 
In the last chapter, we described some statistical properties of valued probability distributions, as 
well as the relationship of samples taken from those distributions to the normal distribution. 
However, throughout the chapter, we simply assumed in examining the sampling distribution 
that we knew the parameters of the underlying distribution. But in real life, we often don't know 
these things. Even for simple things such as coin flips, the "true" distribution of outcomes is that 
the coin is very slightly biased in one direction or the other. A die has tiny imperfections in its 
surface or composition that make it more likely to land on one side or another. However, these 
effects are usually small, and so using the "theoretical" coin which is truly 50-50 is a reasonable 
approximation for our purposes. Likewise, we generally assume for the purposes of poker 
analysis that the deck is fair and each card is random until it is observed. 
 
We can mitigate real-world difficulties with distributions that we can reasonably approximate 
(such as coin flips or die rolls). Other types of distributions, however, pose much more difficult 
problems. In analyzing poker results, we are often interested in a distribution we discussed in the 
last chapter - per hand won/loss amounts. When playing in a casino, it would be quite difficult 
and time-consuming to record the results of every hand - not to mention it might draw unwanted 
attention. The process is somewhat easier online, as downloadable hand histories and software 
tools can automate the process. But even if we have all this data, it's just a sample. For poker 
hands, the probabilities of the underlying distribution won't be reflected in the observed data 
unless you have a really large amount of data. 
 
We can get around this to some extent by using the subject matter of the last chapter. Suppose 
that we could get the mean and variance of our hand outcome distribution. Then we could find 
the sampling distribution and predict the aggregate outcomes from playing different numbers of 
hands. We can't predict the actual outcome of a particular future sample, but we can predict the 
distribution of outcomes that will occur. 
 
Now the problem is to try to infer the population mean and variance from the sample mean and 
variance. We will examine two approaches to this process. The first is the approach of classical 
statistics, and the second is an approach that utilizes the primary topic of this chapter, Bayes' 
theorem. The first approach takes as one of its assumptions that we have no information other 
than the sample about the likelihood of any particular win rate. The second approach postulates a 
distribution of win rates that exists outside of our particular sample that can be used to refine our 
estimates of mean and variance for the population distribution. 
 
Estimating Parameters: Classical Statistics 
Suppose that we have a player who has played a total of 16,900 hands of limit poker. 
Normalizing his results to big bets (BB) in order to account for different limits he has played, he 
has achieved a win rate of x = 1.15 BB/100 hands with a standard deviation of s = 2.1 BB/hand. 
Here instead of µ and σ, which represent population parameters, we use x and s, which are 
sample parameters. Assuming that he plans to continue to play in a similar mix of games with 
similar lineups of players, what can we say about his "true" win rate µ in the games he has 
played? We assume in this section that we have no other information about the likelihood of 
various win rates that might be possible; all win rates from -1 BB/hand to +1BB/hand are 
deemed to be equally probable. 
 
First of all, it's important to note that we only have a sample to work with. As a result, there will 
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be uncertainty surrounding the value of his win rate. However, we know that the sampling 
distribution of 16,900 hands of limit poker will be approximately normal because of the Central 
Limit Theorem. The observed standard deviation s = 2.1 BB/h is a reasonable estimate of the 
standard deviation of the population, particularly because the sample is relatively large. We can 
use these facts to obtain the maximum likelihood estimate of the population mean. 
 
Consider all possible win rates. For each of these win rates, there will be a corresponding 
sampling distribution, a normal curve with a mean of µ and a standard deviation σN. The peak of 
each of these normal curves will be at x = µ, and all the other points will be lower. Now suppose 
that we assume for a moment that the population mean is in fact some particular µ. The height of 
the curve at x = � will be associated with the probability that the observed rumple mean would 
have been the result of the sample. We can find this value for all possible values of µ. Since all 
these normal curves have the same standard deviation σN, they will all be identical, but shifted 
along the X-axis, as in Figure 3.1. 

 
Since the peak of the curve is the highest point, and the observed value � is the peak when µ = �, 
this means that � — 1.15 BB/l00h is the maximum likelihood estimate of the mean of the 
distribution. This may seem intuitive, but we will see when we consider a different approach to 
this problem that the maximum likelihood estimate does not always have to equal the sample 
mean, if we incorporate additional information. 
 
Knowing that the single win rate that is most likely given the sample is the sample mean is a 
useful piece of data, but it doesn't help much with the uncertainty. After all, our hypothetical 
player might have gotten lucky or unlucky. We can calculate the standard deviation of a sample 
of 16,900 hands and we can do some what-if analysis about possible win rates. 
 
Suppose we have a sample N that consists of 16,900 hands taken from an underlying distribution 
with a mean, or win rate, of 1.15 BB/l00h and a standard deviation of 2.1 BB/h. 
  
Then, using equation 2.4: 

Figure 3.1, Shifted normal distributions (labeled points atx=1.15) 
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σN = �√� 
σ16,900 = �2.1 ��/ℎ�(√16,900 hands) 
σ16,900 =273 BB, so 
σN /100h=273/169 ≈ 1.61 
 
The standard deviation of a sample of this size is greater than the win rate itself. Suppose that we 
knew that the parameters of the underlying distribution were the same as the observed ones. If 
we took another sample of 16,900 hands, 32% of the time, the observed  outcome of the 16,900 
hand sample would be lower than -0.46 BB/100 or higher than 2.76 BB/100. 
 
This is a little troubling. How can we be confident in the idea that the sample represents the true 
population mean, when even if that were the case, another sample would be outside of even 
those fairly wide bounds 32% of the time? And what if the true population mean were actually, 
say, zero? Then 1.15 would fall nicely into the one-sigma Interval. In fact, it seems like we can't 
tell the difference very clearly based on this sample between a win rate of zero and a win rate of 
1.15 BB/100. 
 
What we can do to help to capture this uncertainty is create a confidence interval. To create a 
confidence interval, we must first decide on a level of tolerance. Because we're dealing with 
statistical processes, we can't simply say that the probability that the population mean has some 
certain value is zero - we might have gotten extremely lucky or extremely unlucky. However, we 
can choose what is called a significance level. This is a probability value that represents our 
tolerance for error, Then the confidence interval is the answer to the question, "What are all the 
population mean values such that the probability of the observed outcome occurring is less than 
the chosen significance level?" 
 
Suppose that for our observed player, we choose a significance level of 95%. Then we can find a 
confidence level for our player. If our population mean is µ, then a sample of this size taken from 
this population will be between (µ -2σ) and (µ +2σ) 95% of the time. So we can find all the 
values of µ such that the observed value � = 1.15 is between these two boundaries. 
 
As we calculated above, the standard deviation of a sample of 16,900 hands is 1.61 units/100 
hands: 
 
σN = �√� 
σ = �2.1 BB/h�(√16,900 ) 
σ =273 BB per 16,900 hands 
σ /100h=273 BB/169 = 1.61 
 
So as long as the population mean satisfies the following two equations, it will be within the 
confidence interval: 
 �� − 2�� < 1.15 �� + 2�� > 1.15 �� − 2�� < 1.15 � − �2�(1.61) < 1.15 � < 4.37 �� + 2�� > 1.15 � + �2��1.61� > 1.15 
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� > -2.07 
So a 95% confidence interval for this player's win rate (based on the 16,900 hand sample he 
has collected) is [-2.07 BB/100, 4.37 BB/100]. 
 
This does not mean that his true rate is 95% likely to lie on this interval. This is a common 
misunderstanding of the definition of confidence intervals. The confidence interval is all 
values that, if they were the true rate, then the observed rate would be inside the range of 
values that would occur 95% of the time. Classical statistics doesn't make probability estimates 
of parameter values - in fact, the classical view is that the true win rate is either in the interval 
or it isn't, because it is not the result of a random event. No amount of sampling can make us 
sure or unsure as to what the parameter value is. Instead, we can only make claims about the 
likelihood or unlikelihood that we would have observed particular outcomes if a parameter had a 
particular value. 
 
The maximum likelihood estimate and a confidence interval are useful tools for evaluating what 
information we can gain from a sample. In this case, even though a rate of 1.15 BB/100 might 
look reasonable, concluding that this rate is close to the true one is a bit premature. The 
confidence interval can give us an idea of how wide the range of possible population rates might 
be. However, if pressed, the best single estimate of the overall win rate is the maximum 
likelihood estimate, which is the sample mean of 1.15 BB/100 in this case. 
 
To this point, we have assumed that we had no information about the likelihood of different win 
rates - that is, that our experimental evidence was the only source of data about what win  rate a 
player might have. But in truth, some win rates are likelier than others, even before we take a 
measurement. Suppose that you played, say, 5,000 hands of casino poker and in those hands you 
won 500 big bets, a rate of 10 big bets per 100 hands. In this case, the maximum likelihood 
estimate from the last section would be that your win rate was exactly that -10 big bets per 100 
hands, 
 
But we do have other information. We have a fairly large amount of evidence, both anecdotal 
and culled from hand history databases and the like that indicates that among players who play a 
statistically significant number of hands, the highest win rates are near 3-4 BB/100. Even the few 
outliers who have win rates higher than this do not approach a rate of 10 BB/100. Since this is 
information that we have before we even start measuring anything, we call it a priori 
information. 
 
In fact, if we just consider any particular player we measure to be randomly selected from the 
universe of all poker players, there is a probability distribution associated with his win rate. We 
don't know the precise shape of this distribution, of course, because we lack observed evidence 
of the entire universe of poker players. However, if we can make correct assumptions about the 
underlying a priori distribution of win rates, we can make better estimates of the parameters 
based on the observed evidence by combining the two sets of evidence. 
 
Bayes' theorem 
In Chapter 2, we stated the basic principle of probability (equation 1.5). 
 ��� ∩ �� = �����(�|�)   
 
In this form, this equation allows us to calculate the joint probability of A and B from the 
probability of A and the conditional probability of B given A. However, in poker, we are often 
most concerned with calculating the conditional probability of B given that A has already-
occurred - for example, we know the cards in our own hand (A), and now we want to know how 
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this information affects the cards in our opponents hand (B). What we are looking for is the 
conditional probability of B given A. 
 
So we can reorganize equation 1.5 to create a formula for conditional probability.  
 
This is the equation we will refer to as Bayes' theorem: 
 


��|�� =
�(∩�)

�()
          (3.1) 

 
Recall that we defined � as the complement of B in Chapter 1; that is: 
 
p(� )= 1- p(B) 
p(B) + p(�) = l 
 
We already have the definitions: 
 ��� ∩ �� = �����(�|�) 
 
Since we know that B and � sum to 1, p(A) can be expressed as the probability of A given B 
when B occurs, plus the probability of A given B when B occurs. 
 
So we can restate equation 3.1 as: 
 


��|�� =
��|���(�)

��|�������������(�)
         (3.2) 

 
In poker, Bayes' theorem allows us to refine our judgments about probabilities based on new 
information that we observe. In fact, strong players use Bayes' theorem constantly as new 
information appears to continually refine their probability assessments; the process of Bayesian 
inference is at the heart of reading hands and exploitive play, as we shall see in Part II. 
 
A classic example of Bayes' theorem comes from the medical profession. Suppose that we have a 
screening process for a particular condition. If an individual with the condition is screened, the 
screening process properly identifies the condition 80% of the time. If an individual without the 
condition is screened, the screening process improperly identifies him as having the condition 
10% of the time. 5% of the population (on average) has the condition. 
 
Suppose, then, that a person selected randomly from the population is screened, and the 
screening returns a positive result. What is the probability that this person has the condition 
(absent further screening or diagnosis)? 
 
If you answered "about or a little less than 80%," you were wrong, but not alone. Studies of 
doctors' responses to questions such as these have shown a perhaps frightening lack of 
understanding of Bayesian concepts. 
 
We can use Bayes' theorem to find the answer to this problem as follows:  
A = the screening process returns a positive result.  
B = the patient has the condition. 
 
Then we are looking for the probability ���|�� and the following are true:  ���|��) = 0.8 
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(if the patient has the condition, the screening will be positive 80% of the time)  �
���� = 0.1 
 
(if the patient doesn't have the condition, the result will be positive 10% of the time) 
p(B) = 0.05     (5% of all people have the condition) 
p[�) = 0.95     (95% of all people don't have the condition) 
 
And using Equation 3.2, we have:  
 ���|�� =

���|���������|������+ �
�����
�� 
 ���|�� =

�0.8�(0.05)�0.8�(0.05) + �0.1�(0.95)
 

 ���|�� ≈  29.63% 
 
As you can see, the probability that a patient with a positive screening result actually has the 
condition is much lower than the 80% "accuracy" the test has in identifying the condition in 
someone who has it. Testing with this screening process would need to be followed up by 
additional testing to confirm the presence of the condition. 
 
But rather than just plugging into an equation, let's discuss what's happening here by considering 
a population of 100,000 people, all of whom are tested using this screening process. 
 
Of these 100,000 people: 
5,000 actually have the condition.  (5% of the population) 
95,000 actually do not have the condition. (95% of the population) 
 
Of the 5,000 who have the condition: 
4,000 will test positive. (80% of those with the condition) 
1,000 will test negative. (20% false negatives) 
 
Of the 95,000 who have the condition: 
9,500 will test positive. (10% false positives) 
85,500 will test negative. (90% of those without the condition) 
 
Now our question was: given that a person has tested positive, how likely are they to have the 
condition? Out of our 100,000 tested individuals, a total of 13,500 tested positive. Of those, only 
4,000 actually have the condition. 
 ���|��= 4,000/13,500  ���|�� ≈ 29.6% 
 
Additionally, we can see that by increasing the accuracy of the test, either by making it more 
accurate in identifying the condition in those who have it, or in producing fewer false positive 
identifications of the condition in those who do not, we can increase the conditional probability 
that someone who tests positive has the condition. Note that this does not increase the chance 
that somebody actually has the condition - we would not want to increase that! - but rather 
decreases the number of people who incorrectly test positive, and potentially have to incur the 
stress of incorrectly believing they have a condition. 
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Suppose that we increase the effectiveness of the test to always identify those who have the 
condition, while the false positive rate remains the same. Then, using Bayes' theorem: 
 ���|�� =

���|���������|������+ �
�����
�� 
 ���|�� =

�1�(0.05)�1�(0.05) + �0.1�(0.95)
 

 ���|�� ≈  34.5% 
 
Likewise, if we hold the 80% identification rate constant and drop the rate of false positives from 
10% to 6%, we obtain: 
 ���|�� =

�0.8�(0.05)�0.8�(0.05) + �0.06�(0.95)
 

 ���|�� ≈  41.2% 
 
The key to the application of Bayes' theorem is the existence of a prior probability and obtaining 
new information. In the above example, we began with a prior probability that our patient had 
the condition of 5%. After the screening, the positive result was new information that allowed us 
to revise the probability for the patient - in this case upward. This process is called Bayesian 
inference and is critical to successful poker play. 
 
There are countless ways in which Bayesian inference can be used; in fact, many players employ 
this process unconsciously all the time. Consider a situation in a tournament when a player is at a 
table that breaks very early on. He is moved to a new table where the player on his right has 
already amassed a stack seven times as large as the starting stacks, while most of the other 
players in the tournament are still near their starting stacks. Most players would conclude that 
two scenarios are likely: the player with the huge stack is either an extremely loose and 
aggressive player or he happens to simply be an ordinary player who got extremely lucky. The 
natural inclination to believe that he is more likely to be loose and aggressive than very lucky is 
a direct consequence of Bayes' theorem, whether the player from the broken table is aware of this 
concept or not. 
 
We can quantify this effect using the formal version of Bayes' theorem, and this can lead us to 
making stronger plays even without solid information. Consider the following common situation: 
 
A new player sits down in the game. Using all the observational information available to us, 
which might include stereotyping the player's ethnicity, gender, manner, wardrobe, personal 
appearance, and so on, we conclude that he is 10% likely to be a "maniac" who will raise 80% of 
his hands from the cutoff and 90% likely to be a tight player who will raise 10% of his hands 
from that seat. On the first hand he plays, he raises from the cutoff. (Assume there is no posting.) 
Now what is the probability- that he is a maniac? 
 
We can use Bayes' theorem to solve this problem, but we invite you to estimate this probability 
before continuing. We believe that testing intuition is one of the best ways to refine our ability to 
estimate accurately, a skill chat is invaluable not only in poker but in life. 
 
A = The opponent will raise the first hand he plays from the cutoff. 
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B= The opponent is a maniac. 
 ���|��  = 0.8   (if the player is a maniac, he will raise 80% of the time) �
���� = 0.1   (if the player is not a maniac, he will raise 10% of the time) 
p(B) = 0.1   (10% of the time, he is a maniac a priori)  
p(�)= 0.9   (90% of the time, he is not a maniac a priori) 
 
Applying Bayer’s theorem again: 
 ���|�� =

���|���������|������+ �
�����
�� 
 ���|�� =

�0.8�(0.1)�0.8�(0.1) + �0.1�(0.9)
 

 ���|�� ≈  47.1% 
 
So simply by observing this player raising the first hand, we can adjust the probability of this 
slayer being a maniac from just 10% to 47% immediately. If the player raises the first two hands 
(assuming the same inference for the seat next to the cutoff], this probability moves to nearly 
87%! Of course, these probabilities are subject to the accuracy of our original assumptions - in 
reality, there are not just two types of players, and our probability estimates are probably not so 
crisp about what type of player he is. 
 
One tendency among players is to delay characterizing and adjusting to a player's play until 
gaining a little more information, by observing some hands or the like. But this view is overly 
passive in our view; maximizing EV means taking advantage of all the information we have at 
our disposal and not necessarily waiting for confirmation that the information is reliable before 
trying to take advantage of it. The error that these players are making is that they- do not realize 
the power of the information they have gained. It is worth noting that many players, even players 
who do not play well often make this adjustment, or a similar one, intuitively. But beware! This 
adjustment is open to exploitation by players who will sit down in a game and play very 
differently from their usual style in an attempt to induce significant adjustments by players in the 
game. 
 
Strong players use Bayes' theorem constantly as new information appears to continually refine 
their probability assessments; the process of Bayesian inference is at the heart of reading hands 
and exploitive play, as we shall see in Part II. But even away from the table, Bayes' theorem can 
allow us to make more informed conclusions about data. To see an example of this, we return to 
the topic of win rates. 
 
Estimating Parameters: Bayesian Statistics 
Recall earlier in this chapter we discussed a player who had played a total of 16,900 hands of 
limit poker with the following observed statistics:  
Win rate of � = 1.15 BB/100 hands  
Standard deviation of s = 2.1 BB/hand. 
 
We were concerned with some of the statements that we could make about his "true" win rate 
based on these observations. Using methods from classical statistics, we found that his maximum 
likelihood estimator for win rate was 1.15 BB/100 hands and his 95% confidence interval was [-
2.07 BB/100, 4.37 BB/100]. These statements relied on an assumption that we had no additional 
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information about the distribution of this player's win rates. 
 
However, suppose that we guess at a distribution of win rates and try to apply Bayes' theorem to 
the distribution of win rates and this player's results in order to produce a more accurate estimate. 
To do this, we must first hypothesize an overall distribution of win rates for this player. Let's 
assume that he is pulled randomly from the population of regular poker players. What is the 
shape of this distribution, which is called a prior probability distribution? 
 
It's pretty unclear at a glance what this distribution looks like - after all, we do not have access to 
the results and records of the broad population. But we can simplify and estimate, hoping that 
our distribution of win rates will be close enough to the truth that we can gain from incorporating 
it into our estimates. Assuming that our player plays some mixture of lower mid-limit games 
such as $10-$20 to $30- $60, we can estimate the total rake paid by the game as about $3-$4 per 
hand, or perhaps 0.1 BB/h. Dividing this amongst all the players approximately equally, we 
obtain a net rake effect on everyone's win rate of about 0.01 BB/h, or 1 BB/100. 
 
The mean of the distribution of all players' win rates, then, is equal to this value, as this is the net 
flow of money out of the game. Suppose that we have a roughly normal distribution of win rates, 
let's just estimate a standard deviation (of win rates) of about 0.015 BB/h. This would lead to a 
population where 68% of players have a rate between -2.5 BB/100 and +0.5 BB/100 and where 
95% of players would have a rate between -4 bb/100 and +2 BB/100. This might square with 
your intuition - if not, these numbers can be tweaked to reflect different assumptions without 
changing the underlying process. 
 
To simplify the computation, instead of using the continuous normal distribution, we will create 
a discrete distribution that roughly mirrors our assumptions. We assume that the underlying 
distribution of all poker players is as follows: 
 
Win Rate % of players with this 

win rate 

-5 BB/100 0.25% 
-4 BB/100 2% 
-3 BB/100 8% 
-2 BB/100 20% 
-1 BB/100 39.5% 
0 BB/100 20% 

+1 BB/100 8% 
+2 BB/100 2% 

+3 BB/100 0.25% 
 
Now that we have an a priori distribution of win rates, we can apply Bayes' theorem to this 
problem. For each win rate, we calculate: 
A = the chance of a win rate of 1.15 being observed. 
B = the chance that this particular win rate is the true one (a priori). 
 
We cannot directly find the probability of a particular win rate being observed (because the 
normal is a continuous distribution). We will instead substitute the probability of a win rate 
between 1.14 and 1.16 being observed as a proxy for this value. Recall that the standard 
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deviation of a sample of this size was 1.61 bets. �
���� is calculated by simply calculating the 
weighted mean of ���|�� excluding the current row. From a probability chart: 
 

Win Rate p(�) ���|�� �
���� p(B) 

- 5 BB/100 0.25% 0.000004 0.00222555 99.75% 
- 4 BB/100 2% 0.000031 0.00226468 98% 
- 3 BB/100 8% 0.000182 0.00239720 92% 

- 2 BB/100 20% 0.000738 0.00259053 80% 
- 1 BB/100 39.5% 0.002037 0.00233943 60.5% 
 0 BB/100 20% 0.003834 0.00181659 80% 
- 1 BB/100 8% 0.004918 0.00198539 92% 

- 2 BB/100 2% 0.004301 0.00217753 98% 
- 3 BB/100 0.25% 0.002564 0.00221914 99.75% 

 
Applying Bayes' theorem to each of these rows: 
 ���|�� =

���|���������|������+ �
�����
�� 
 

Win Rate ���|�� 
- 5 BB/100 0.00% 
- 4 BB/100 0.03% 
- 3 BB/100 0.66% 

- 2 BB/100 6.65% 
- 1 BB/100 36.25% 

 0 BB/100 34.54% 
- 1 BB/100 17.72% 
- 2 BB/100 3.87% 

- 3 BB/100 0.29% 
Total 100% 

 
When we looked at the classical approach, we were able to generate a maximum likelihood 
estimator. In the same way, we can identify -1 BB/100 as the maximum likelihood estimate 
given these assumptions. Of course, these assumptions aren't really the truth - possible win rates 
for players are close to continuous. Nevertheless, if we used a continuous distribution and did the 
more complex math that arises, we would find a distribution similar to this one. And the key 
implication of this approach is that because of the relative scarcity of winning players, our 
hypothetical hero is nearly as likely to be a losing player who has gotten lucky as he is to have a 
positive win rate. 
 
We could see this even more starkly if we considered a player with a much higher observed win 
rate, perhaps 5 BB/l00h. The classical approach would still assign a maximum likelihood 
estimate of 5 BB/l00h, because it considers all win rates to be equally likely (because in the 
classical method we have no additional information about the distribution of win rates). 
However, recalculating the above analysis with an observed win rate of 5 BB. we find: 
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Win Rate ���|�� 
- 5 BB/100 0.00% 

- 4 BB/100 0.00% 

- 3 BB/100 0.00% 

- 2 BB/100 0.16% 

- 1 BB/100 3.79% 

0 BB/100 15.78% 

- 1 BB/100 35.40% 

- 2 BB/100 33.84% 

- 3 BB/100 11.03% 

Total 100% 

 
We can see that here, our player is a heavy favorite to be a winning player, and a substantial one 
at that. However, as win rates of 5 BB/100 hands are absent from the population, Bayes' theorem 
properly adjusts his win rate to the more likely levels of the top 10% of all players. 
 
Gathering more data should naturally cause these Bayesian estimates to converge on the 
observed win rates - the more consistently a player has demonstrated his ability to win at a 
particular rate, the more likely that that is his true rate. And if we recalculate the above 
considering a sample of 100,000 hands, we obtain: 
 

Win Rate ���|�� 
- 5 BB/100 0.00% 

- 4 BB/100 0.00% 

- 3 BB/100 0.00% 

- 2 BB/100 0.00% 

- 1 BB/100 1.57% 

0 BB/100 33.42% 

- 1 BB/100 58.37% 

- 2 BB/100 6.60% 

- 3 BB/100 0.04% 

Total 100% 

 
By this sample size, we are much more confident that the observations match the reality, even 
though in the underlying distribution, only ten percent of players win at least 1 BB/100. 
 
It is worth noting that there is somewhat of a schism between classical statisticians (sometimes 
called frequentists) and Bayesian statisticians. This disagreement centers (roughly) on the 
Bayesian idea that population parameters should be thought of as probability distributions. 
Bayesians estimate a prior distribution, observe a sample, and then adjust their prior distribution 
in light of the new evidence. Frequentists reject this approach, preferring to characterize 
population parameters as fixed, unchanging values, even if we cannot know their value. We are 
strongly oriented toward the Bayesian point of view because of its usefulness in poker analysis. 
 
The method we have used here is not even a full-fledged Bayesian technique, but merely a 
simplification of techniques of Bayesian analysis intended to make the idea accessible. For more 
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detail on this and on the divide between practitioners of Bayesian techniques and classical 
statisticians, we suggest that you consult advanced statistics texts, particularly those that have 
thorough treatments of point estimation and Bayesian methods. 
 
One topic that emerges from this analysis is the idea of regression to the mean. Suppose you 
take an observation - perhaps of win rates over a sample that is of a small size. The idea here is 
that observed win rates above the mean will tend be lower if you repeat the observation in the 
future, and observed win rates below the mean will tend to perform better in the future. This is 
not because of any kind of statistical "evening out" where outlying trials from the past are offset 
by outlying trials (in the other direction) in the future - these events are independent. The 
principle that is at work here is that if you have outperformed the mean of the entire population, 
it is somewhat more likely that you have outperformed your expectation as well, while if you 
have underperformed it, you have likely underperformed your own expectation also. As a result, 
you will tend (sometimes very slightly) to regress a little toward the mean of all players - that is, 
the best prediction we can make contains a small amount of the overall mean mixed with 
observed results. We can see this at work in the Bayesian analysis of our hypothetical player - 
after 16,900 hands, his adjusted win rate prediction was still very heavily influenced by the 
population distribution, which dragged his win rate down toward the population mean of -1 
BB/100. 
 
Key Concepts 

• When estimating population parameters from observed data, we can use one of two 
methods: the frequentist or classical method, or a Bayesian method. 

• The classical method assumes that we have no information about the underlying 
distribution. This gives rise to a maximum likelihood estimate equal to the sample mean, 
and a confidence interval that includes all values for which the observed result is inside 
the significance level. 

• Bayes' rule gives us a robust methodology for incorporating new information into prior 
probability estimates. 

• Using a prior probability distribution and applying Bayes' theorem can yield better 
(Bayesian) estimators of population parameters when we have accurate information about 
the prior distribution. 
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Part II: Exploitive Play  
 
It is  not enough  to  be a good player;  
you must also play well.  

 
 

Siegbert Tarrasch  
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Chapter 4 
Playing the Odds: Pot Odds and Implied Odds 
 
The heart of poker is decision-making. Players who make better decisions than their opponents 
win; players who make worse decisions than their opponents lose. In Part I, we defined decisions 
with higher EV as "better" than their lower EV counterparts. In Parts II and III, we will examine 
the decision-making process as it applies to playing poker games and identify both techniques of 
analysis and methods of play that lead to making the best decisions at each juncture. 
 
Part II deals with what we call exploitive play; this is play which seeks to maximize EV by 
taking the action at each decision point which has the highest EV in a particular situation, 
inclusive of whatever information is available about the opponent, such as his tendencies, tells, 
and so on. Virtually every player uses exploitive play in one form or another, and many players, 
even some of the strongest players in the world, view exploitive play as the most evolved form 
of poker. 
 
Before we get into a discussion of exploitive play, we will introduce some terms and definitions. 
First, we have the concept of a game. In the poker world, we have different definitions of this 
term, and in Part III, we will be primarily working in the domain of game theory, the 
mathematical study of games. For now, we will define a game as containing the following 
elements: 
 

• There are two or more players.  
• At least one player has a choice of actions.      
• The game has a set of outcomes for each player. 
• The outcomes depend on the choices of actions by the players. 

 
Normally in our poker discussions, there will be two or more players, and both players will have 
action choices. The set of outcomes for the game will be expressed in dollars won or lost. 
 
Additionally, we call the "choice of action" a strategy. In game theory terms, a strategy is a 
complete specification of a player's actions choices at all possible paths the hand might follow. 
In poker, strategies are extremely difficult to specify, as we have what might be called a 
combinatorial explosion of paths. There are 1326 starting hands a player might hold. Then there 
are 19.600 different three-card flops that might hit, 47 different turns, and 46 different rivers. 
Even after factoring in some equivalences with regard to suit, we still have well over five million 
board/hand combinations to consider. Then we must specify how we will play-each of our hands 
on each street, how we will respond to raises, checks, bets, and so on. 
 
This is basically impractical for any but the simplest toy games. As a result, we often use the 
term strategy a little more loosely in poker. Frequently, when we use this term we are referring to 
our expected play on this and perhaps one more street. The depth to which we specify the 
strategy is often tied to the convenience with which we can express it; simpler games and more 
static boards can often go deeper than more complex ones. It is normally just simpler to treat the 
game this way. We do, however, try to tie together the play on two or more streets as much as 
possible. 
 
The concepts of Part I have particular meanings when we consider the play in terms of strategies. 
It is fairly meaningless to consider the expectation of a hand in a vacuum before the play begins, 
so instead we use the term "expectation of a hand" here to mean the expectation of a hand played 
with a given strategy against an opposing strategy. Likewise, the expectation of a hand 
distribution against a strategy is the weighted average expectation of the hands in that 
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distribution against the opposing strategy, and so on. 
 
Maximizing expectation against the opponent's strategy is the goal of exploitive play. If our 
opponent plays a strategy S, we define the maximally exploitive strategy to be the strategy (or 
one of the strategies) that has the highest expectation against S. When playing exploitively, it is 
often our goal to find the strategy that is maximally exploitive and then employ it. By doing this, 
we maximize our expectation. We begin with a simple toy game to illustrate the process of 
finding this strategy. 
 
Example 4.1 
Two players play headsup limit poker on the river. Player A has either the nuts (20% of the time) 
or a valueless (or dead) hand (80% of the time), and Player B has some hand of mediocre value - 
enough to beat dead hands, but which loses to the nuts. The pot is four big bets, and A is first. 
Let us first consider what will happen if A checks. B could bet, but A knows exactly when he has 
B beaten or not; hence he will raise B with nut hands and fold at least most of his bluffing hands. 
B cannot gain value by betting; so he will check. As a result, A will bet all of his nut hands. A 
might also bet some of his dead hands as a bluff: if B folds, A can gain the whole pot. 
 
We'll call the % of total hands that A bluffs with x. A’s selection of x is his strategy selection. B 
loses one bet for calling when A has a nut hand, and wins five bets (the four in the pot plus the 
one A bluffed) when A has a bluff. B's calling strategy only applies when A bets, so the 
probability values below are conditional on A betting. Using Equation 1.11, the expectation of 
B's hand if he calls is: 
 
<B, call > = p(A has nuts)(-1) + p(A has a bluff)(+5) 
<B, call >  = (0.2)(-1) + (5)x 
<B, call >  = 5x - 0.2 
 
If B folds, his expectation is simply zero. 
 
<B, fold> = 0  
 
We consider a few potential values for x: 
 

Situation x value <B, call> <B, fold> 
A never bluffs 0 -0.2 0 

A always bluffs 0.8 +3.8 0 

A bluffs 5% 0.05 +.05 0 
A bluffs 4% .04 0 0 

 
B should choose the strategy that has higher expectation in each of these cases. If A bluffs often 
B should call all the time. If A bluffs rarely, B should never call. 
 
To determine how often A will bluff, B might use his knowledge of A's play, tells, or some other 
information, perhaps using Bayes' theorem (A might have lost the last hand and therefore has a 
higher a priori chance to be playing this hand overaggressively because of emotion, etc.). 
 
We can also graph these two functions: 
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Figure 4.1 shows the linear functions that represent B's strategy options. We can see that B's 
maximally exploitive strategy involves choosing the strategy that has the higher value at the x-
value that A is playing. So when x is below 0.04, (meaning that A is bluffing 4% of the time), B 
should simply fold; above that B should call. One tiling that is important to note about this is that 
exploitive play often involves shifting strategies rather drastically. If A changes his x-value from 
0.039 to 0.041, that is, bluffing two thousandths of a percent more often, B changes his strategy 
from folding 100% of the time to calling 100% of the time. 
 
Over the next several chapters, we will look, at some of the principles of exploitive play, 
including pot odds and implied odds, and then consider the play of some example hands. We -
will consider situations where the cards are exposed but the play is non-trivial and then play a 
single hand against a distribution of hands. We focus primarily on the process of trying to find 
the maximally exploitive strategy in lieu of giving specific play advice on any given hand, and 
especially on the process of identifying specific weaknesses in the opponent's strategy. This last 
is particularly valuable as it is generally quite repeatable and easy to do at the table. 
 
Pot Odds 
None of the popular forms of poker are static games (where the value of hands does not change 
from street to street). Instead, one common element of all poker games played in casinos is the 
idea of the draw. When beginners are taught poker, they often learn that four cards to a flush and 
four cards to a straight are draws and that hands such as pairs, trips, and flushes and straights are 
made hands. This is a useful simplification, but we use "draw" to mean a variety of types of 
hands. Most often, we use "draw" to refer to hands whose value if the hand of poker ended 
immediately is not best among the hands remaining, but if certain cards (often called outs) come, 
they will improve to be best. However, in some cases, this can be misleading. For example, 
consider the following two hands on a flop of T♣ 9♣ 2♦ in holdem: 
 
Hand A: Q♣ J♣  
Hand B: A♠ 3♦ 
 
Hand A has more than a 70% chance of whining the hand despite his five-card poker hand being 

Bluffing frequency 

Figure 4.1, Game Equity for various B strategies 
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worse at this point. In this hand, it may seem a little strange to refer to the hand that is more than 
a 7 to 3 favorite as "the draw" while the other hand is the "made hand," because of the 
connotations we usually associate with these terms. However, we will consistently use the term 
"draw" throughout this book to mean the hand that at the moment has the worse five-card poker 
hand and needs to catch one of its outs, no matter how numerous they may be, in order to win. In 
contrast, we will use the term "favorite" to mean that hand that has more equity in the pot and 
"underdog" to mean the hand that has less. In the above example, the Q♣ J♣ hand is both the 
favorite and a draw. 
 
One of the fundamental confrontations between types of hands m poker is between made hands 
and draws. This confrontation is particularly accentuated in limit poker, where the made hands 
arc unable to make bets large enough to force the draws to fold; instead, they simply extract 
value, while (he draws call because the expectation from their share of the pot is more than the 
amount they must call. However, all is not lost in big-bet poker for the draws. As we shall see 
later on, draws are able to take advantage of the structure of no-limit games to create a special 
type of situation that is extremely profitable by employing a play called the semi-bluff. 
 
Example 4.2 
The game is $30-60 holdem. Player A has A♣ A♦. Player B has 9♥ 8♥. The board is K♥ 7♣ 3♠ 
2♥. The pot is $400. Player A is first. How should the action go if both players know the full 
situation? 
 
You can likely guess that the action goes A bets - B calls. It is valuable, however, to examine the 
underlying mathematics because it provides an excellent introduction to this type of analysis and 
to the concept of pot odds. 
 
If Player A checks, then Player B will certainly check behind. If B were to bet, he would 
immediately lose at a minimum 3

5�  of his bet (because he only wins the pot 1
5� of the time), plus 

additional EV if Player A were to raise. There will be no betting on the river, since both players 
will know who has won the hand. Rather, any bet made by the best hand will not be called on the 
river, so effectively the pot will be awarded to the best hand. 
 
Since 35 of the remaining 44 cards give AA the win, we use Equation 1.11 to determine A’s EV 
from checking to be: 
 
<A, check > = p(A wins)) + (pot size) 
<A, check > = (35

44� )(400) 
<A, check > = $318.18 
 
Now let's consider B's options. Again, B will not raise, as he has just a 1

5�  chance of winning the 
pot (with 9 cards out of 44) and A will never fold. So B must choose between calling and 
folding. 
 
<B, call> = (p(B wins)) (new pot size) - (cost of a call)  
<B, call> = (9 44� ) ($400+60+60) - $60 
 
<B, call> = (9

44� ) ($520) - $60  
<B, call> = $46.36  
<B, fold> = 0 
 
 


